Segmentation of In-Vivo 1-Photon Neural Videos Using Neural Networks
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the human body, including in neurons. In addition to its abundance,
calcium is also able to easily localized, making calcium a great tool for
determining the location of cells [1].

As researchers continue to uncover new knowledge about the brain

During the “training phase”, the neural network must be trained on how to everyday, our understanding of how our brain functions expands.

manipulate the input data to output the correct output data. To do this, a
“training set” 1s created for the neural network to use back-propagation
techniques to “learn” to output the correct output.
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